

it will still have values falling between these limits when multiplied by $Y_0^2 R_0 / 4C'$. The new function will intersect the curve in Fig. 2 in $2n + 2$ points, and the difference between the new function and the equiripple function defines an even polynomial of degree $2n$ with $2n + 2$ zeros. Since this is clearly impossible unless $E_{n+1}'(t^2) = E_{n+1}(t^2)$, the conditions of the theorem characterize a unique, optimum transformer cascade which matches the specified reactively shunted load with equiripple performance and reflection coefficient zeros in the design band.

COMMENTS

One of the principal points of interest in this letter arises from the fact that this example shows that an integral condition on the logarithm of the absolute value of the reflection coefficient like [1, eq. (58)] cannot be used to argue that in an optimum match to a reactively loaded load, one must avoid reflection coefficient zeros in the design band. The situation here for distributed matching networks should be compared to that for lumped constant networks discussed extensively by Fano [3].

The argument used in the proof of the theorem is very similar to that which one would use to prove that the Chebyshev polynomials provide the solution to the problem of approximating

$2^{n-1}x^n$ as closely as possible to a polynomial of lower degree, a so-called Chebyshev problem [2]. In this case, however, the coefficient of the even function $t^{n+2}/(1+t^2)^n$, which is to be approximated, is not fixed by the class of networks to be considered, with the consequence that we are not dealing with a true Chebyshev problem. Nevertheless, since all the networks of the permitted class result in a larger, leading coefficient than is associated with the network which provides the behavior required by the Chebyshev criterion, a proof that it is optimum can still be constructed. It may be of future interest to refer to such a problem as quasi-Chebyshev problem.

It should also be noted that similar remarks apply to the dual network in which the termination consists of a resistance in series with a capacitive stub.

REFERENCES

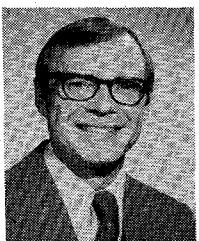
- [1] H. J. Carlin and W. Kohler, "Direct synthesis of band-pass transmission line structures," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-13, pp. 283-297, May, 1965.
- [2] N. I. Achieser, *Theory of Approximation*. New York: Ungar, 1956, pp. 51-58.
- [3] R. Fano, "Theoretical limitations on the broadband matching of arbitrary impedances," *J. Franklin Inst.*, vol. 249, pp. 57-83, 139-154, Jan.-June, 1950.

Contributors

Colin D. Corbey was born in Amersham, England, on May 31, 1944. He received the B.Sc. degree in electrical engineering from the University College of Swansea, Swansea, Wales, in 1965, and the diploma in microwave engineering and the M.Sc. degree from the University College of London, London, England, in 1966.

He joined the Mullard Research Laboratories, Redhill, Surrey, England, in 1966, where he has been engaged in research and development of varactor-diode microwave harmonic generators and broad-band varactor-tuned oscillators using Gunn and IMPATT diodes. At present he is working on high-power pulsed microwave sources.

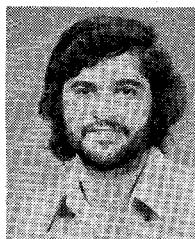
Robert Davies was born in Cardiff, Wales, on September 15, 1938. He received the B.Sc. degree in electrical engineering from the University College of South Wales and Monmouthshire, Cardiff, in 1959, and the Ph.D. degree from Queen's University of Belfast, Belfast, Northern Ireland, in 1964.


He joined Mullard Research Laboratories, Redhill, Surrey, England, in 1963, and has since been engaged in the characterization and application of microwave semiconductor devices. He now leads a group concerned with the use of microwave semiconductor devices in circuits and subassemblies involving microwave integrated circuit (MIC) parametric amplifiers, transistor and FET low-noise amplifiers, transistor power amplifiers and frequency multipliers, TRAPATT oscillators, frequency-stable sources, and ferrite-diode limiters.

Pietro de Santis (M'65) was born in Rome, Italy, on November 24, 1937. He received the "Dottore in Ingegneria Elettronica" degree with highest honors from the University of Rome, Rome, Italy, in 1962 and the M.S. degree in electrophysics from the Polytechnic Institute of Brooklyn, New York, N.Y., in 1965.

In 1962 he joined the Research Department of Selenia S.p.A., Rome, where he was engaged in research work on microwave plasmas and ferrites. In 1971 he received the Libera Docenza in electromagnetic fields and circuits. From 1969 to June 1975 he was Professore Incaricato of microwaves at the University of Naples, Naples, Italy. He is the Italian Representative in the management committee of the European Microwave Conference.

Dr. de Santis is a member of the American Physical Society, Associazione Elettrotecnica Italiana, and a corresponding member of the SMAG/TC HFM.



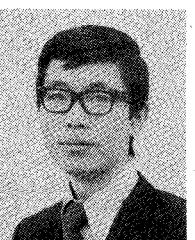
Carl H. Durney (S'60-M'64) was born in Blackfoot, ID, on April 22, 1931. He received the B.S. degree in electrical engineering from Utah State University, Logan, in 1958, and the M.S. and Ph.D. degrees in electrical engineering from the University of Utah, Salt Lake City, in 1961 and 1964, respectively.

From 1958 to 1959 he was employed as an Associate Research Engineer with the Boeing Airplane Company, Seattle, WA, where he studied the use of delay lines in control systems. He has been with the University of Utah since 1963, when he was appointed an As-

sistant Research Professor in Electrical Engineering. From 1965 to 1966 he was employed at the Bell Telephone Laboratories, Holmdel, NJ, while on leave from the University of Utah. During this time he worked in the area of microwave avalanche diode oscillators. Again, in 1971, he was engaged in study and research involving microwave biological effects at the University of Washington while on leave from the University of Utah. He is currently Professor of Electrical Engineering at the University of Utah, where he is engaged in teaching and research in electromagnetics, engineering pedagogy, and microwave biological effects.

Dr. Durney is a member of Sigma Tau, Phi Kappa Phi, Sigma Pi Sigma, Eta Kappa Nu, and the American Society for Engineering Education.

Talal K. Findakly (S'74) was born in Mosul, Iraq, on July 25, 1948. He received the B.Sc. degree in electrical engineering from the University of Baghdad, Baghdad, Iraq, in 1968, and the M.S. degree in electrical engineering from Tufts University, Medford, MA, in 1974.


He was a Radar Engineer with the Iraqi Air Force from January 1969 to February 1971. Between March 1971 and January 1973 he was with the Iraqi National Oil Company (INOC), involved in seismic exploration programs in search of natural resources in Iraq. He is currently working towards the Ph.D. degree in electrical engineering at Purdue University, Lafayette, IN.

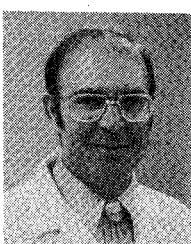
Robert A. Gough was born in Northampton, England, on April 17, 1949. He received the B.Sc. (Honours) degree in electronic engineering from the University of Leeds, Leeds, England, in 1970, and the Ph.D. degree from the University of Bradford, Bradford, Yorks., England, in 1973 for work on varactor-tuned Gunn oscillators.

Since 1973 he has been with the European Space Agency at ESTEC, Domeinweg, Noordwijk, The Netherlands, where he is involved in communication-satellite-system studies in the Telecommunications Division. He has also worked extensively on the linearization of high-power L-band transistor amplifiers for use on satellites.

Dr. Gough is an associate member of the Institution of Electrical Engineers.

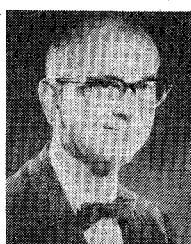
Kunio Hashimoto was born in Ohita, Japan on November 7, 1945. He received the B.S. and M.S. degrees in electrical engineering from Osaka University, Toyonaka, Osaka, in 1968 and 1970, respectively.

He joined the Yokosuka Electrical Communication Laboratory, Nippon Telegraph and Telephone Public Corporation, Yokosuka-shi, Tokyo, Japan, in 1970. From 1968 to 1973 he was engaged in the development of multimode waveguides and components for a guided millimeter-wave transmission system. Since 1974 he has been engaged in research on optical transmission systems.


Mr. Hashimoto is a member of the Institute of Electrical and Electronics Engineers of Japan.

Haim M. Haskal (S'60-M'64-SM'74) was born in Bucharest, Romania, on December 15, 1929. He received the B.S. degree in electrical engineering from the Technion—Israel Institute of Technology, Haifa, in 1953, and the M.S. and Ph.D. degrees from the Case Institute of Technology, Cleveland, OH, in 1961 and 1964, respectively.

Between 1954 and 1956 he served as a Technical Officer in the Israel Defense Army, and later as an Electronics Engineer engaged in design of digital circuits. He joined Sylvania's Applied Research Laboratory in 1964 and was engaged in laser modulator research. In 1965 he joined the Applied Research Division of Honeywell Information Systems, Waltham, MA. There he studied problems of high-speed pulse propagation on transmission lines, magnetic design of plated wire memories, etc. Between 1966 and 1971 he was Director of the Optical Mass Memory program at Honeywell Information Systems. In 1971 he joined the Department of Electrical Engineering of Tufts University, Medford, MA. He has been a Consultant to Honeywell and a number of industrial organizations in the Boston area.


Dr. Haskal is a member of Eta Kappa Nu and Sigma Xi.

James L. Lords was born in Salt Lake City, UT, on April 5, 1928. He received the B.S., M.S., and Ph.D. degrees from the University of Utah, Salt Lake City, in 1950, 1951, and 1960, respectively.

From 1960 to 1962 he served as a Postdoctoral Associate at the University of Wisconsin, Madison. In 1962 he returned to the University of Utah as Assistant Professor of Experimental Biology. He worked on problems related to thermophilic organisms. As a natural consequence of his interest in thermophily, he became involved in the effects of electromagnetic radiation, particularly the microwave region of the spectrum, on biological systems. He is currently a Professor in the Department of Biology, where he is engaged in the teaching of Physiology and in research on the effects of microwaves on the physiology, biochemistry, and behavior of organisms.

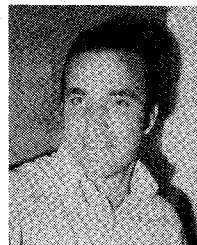
Dr. Lords is a member of the American Association for the Advancement of Science, Phi Sigma, Sigma Xi, Phi Kappa Phi, and the Utah Academy of Science, Arts and Letters.

George L. Matthaei (S'49-M'57-F'65) received the B.S. degree from the University of Washington, Seattle, in 1948, and the Ph.D. degree from Stanford University, Stanford, CA, in 1952.

From 1951 to 1955 he was on the faculty of the University of California, Berkeley, where he was an Assistant Professor and his specialty was network synthesis. From 1955 to 1964 he was engaged in system analysis and microwave component research at the Ramo-Wooldridge Corporation. From 1958 to 1964 he was at the Stanford Research Institute, where he was engaged in microwave device research and became Manager of the Electromagnetic Techniques Laboratory in 1962. In July 1964 he joined the Department of Electrical Engineering at the University of California, Santa Barbara, where he is a Professor. His present field of research is acoustic surface-wave devices. He is coauthor of the book *Microwave Filters, Impedance-Matching Networks and Coupling Structures* and a contributor to several others books.

Dr. Matthaei is a member of Tau Beta Pi, Sigma Xi, and Eta

Kappa Nu. He was the winner of the 1961 Microwave Prize of the IEEE Group on Microwave Theory and Techniques.


Brian P. O'Shaughnessy (S'74) was born in Long Beach, CA, on March 31, 1950. He received the B.S. degree in electrical engineering in 1973, and the M.S. degree in 1974, both from the University of California, Santa Barbara.

Since 1973 he has been a graduate student in the Department of Electrical Engineering, University of California, Santa Barbara. During this time he has been a Teaching Assistant and a Research Assistant in the area of acoustic surface-wave devices. His particular interests are in electromagnetic theory, circuit theory, especially computer-aided circuit analysis, and engineering education.

Fioravante Pucci was born in Rome, Italy, on May 6, 1945. He received the "Diploma in Telecomunicazioni" from the Istituto Galileo Galilei, Italy, in 1964.

During 1965 he served in the Italian Army as Lieutenant at the Signal Corp School. In 1966 he joined the Research Division of the Selenia Company, Rome, working on the design and development of advanced ferrite microwave components, MIC, computer-aided design, and characterization and modeling of IMPATT and Gunn diodes. He is the author of several papers on microwave ferrites and the holder of a patent on a novel type of circulator.

Charles E. Tinney was born in Waynesville, OH, on January 11, 1940. He received the B.S. and M.S. degrees in electrical engineering from the Brigham Young University, Provo, UT, in 1967 and 1968, respectively, and the Ph.D. degree in electrical engineering from the University of Utah, Salt Lake City, in 1974.

He was employed by Westinghouse Electric in 1967 and was with the General Electric Company in 1969, working in aerospace radar defense systems. In 1973 he was engaged by the Utah Biomedical Test Laboratories as an Assistant Researcher in the field of design and testing of continuous monitoring devices used in monitoring eye pressure to detect glaucoma and related diseases of the eye. Also, prior to, and during this time, he worked as a Teaching Assistant and as a Research Assistant in the Department of Electrical Engineering at the University of Utah, studying neural effects of microwave irradiation on biological systems. In 1974 he joined the staff of the Naval Undersea Center, Biosystems Department, San Diego, CA, where he is currently engaged in research developing new biotelemetry systems for measuring ECG, EMG, and EEG for aquatic mammals.

David Y. Wong (S'73) was born in Hong Kong in 1950. He received the B.S. degree in electrical engineering from the University of California, Santa Barbara, in 1973.

Since 1973 he has been at the University of California, Santa Barbara, working toward the M.S. degree and assisting in research work on acoustic surface-wave devices. He is currently Assistant Engineer at the Speech Communications Research Laboratory, Santa Barbara, working in the areas of speech analysis and signal processing. His major areas of interest are in communications and systems science.

Mr. Wong is a member of Eta Kappa Nu.